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Abstract

We develop a test of the joint null hypothesis of linearity and nonstationarity within a threshold

autoregressive process of order one with deterministic components. We derive the limiting distribution

of a Wald type test statistic and subsequently investigate its local power and finite sample properties.

We view our test as a useful diagnostic tool since a non rejection of our null hypothesis would remove

the need to explore nonlinearities any further and support a linear autoregression with a unit root.
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1 Introduction

This paper is concerned with inferences within an environment that combines threshold type nonlinearities

with the presence of a highly persistent variable that contains a unit root. One of the first papers to

introduce an environment that combined unit root type of nonstationarities with nonlinear dynamics

was Caner and Hansen (2001). Operating within an autoregressive specification formulated as an ADF

regression the authors developed two key tests for detecting the presence of threshold effects when the

underlying variable contains a unit root under the null hypothesis (see also Pitarakis (2008)). Their

first test was designed to test the null of linearity in all the parameters of the ADF regression without

explicitly imposing the unit root restriction within the null hypothesis. A random walk with drift was

however maintained as the data generating process. In a second test the authors concentrated solely on

the autoregressive parameters associated with the presence or absence of a unit root and developed tests

of the joint null of a unit root and linearity without constraining the remaining parameters of the ADF

regression associated with the deterministic components (i.e. constant and trend).

In this paper we argue that a useful addition to the existing toolkit for uncovering threshold effects

in nonstationary environments is a test that would allow one to test the joint null of linearity in all the

parameters of the ADF regression and nonstationarity. In this context we are interested in the limiting

distribution of a Wald type test under a null hypothesis that imposes not only the stability of all AR

parameters but also the unit root explicitly. We expect such a test to have power against departures from

linearity as well as departures from the unit root null. More importantly a non rejection of this joint

null would conclude the analysis and support the modelling of the variable under investigation through a

linear unit root process. In this sense it may be viewed as a useful diagnostic tool before attempting to

undertake any further investigation of nonlinear dynamics.

2 The Model and Asymptotic Inference

We are interested in testing HA
0 : θ1 = θ2, ρ1 = ρ2 = 0 in

∆yt = (θ′1wt−1 + ρ1yt−1)I(Zt−1 ≤ γ) + (θ′2wt−1 + ρ2yt−1)I(Zt−1 > γ) + et (1)

with wt−1 = (1 t)′ and θi = (µi δi)
′ for i = 1, 2. Zt = yt − yt−m with m ≥ 1 is the stationary threshold

variable and the threshold parameter γ is assumed unknown with γ ∈ Γ = [γ1, γ2]. The parameters γ1

and γ2 are selected such that P (Zt ≤ γ1) = π1 > 0 and P (Zt ≤ γ2) = π2 < 1 for given π1 and π2 (e.g. 10%

trimming on both ends). As in Caner and Hansen (2001) and for later use it is also convenient to rewrite

I(Zt−1 ≤ γ) = I(G(Zt−1) ≤ G(γ)) ≡ I(Ut−1 ≤ λ) where G(.) is the marginal distribution of Zt and

Ut denotes a uniformly distributed random variable on [0, 1]. Throughout this paper and for notational

simplicity we also let I1t−1 and I2t−1 denote the two indicator functions I(Ut−1 ≤ λ) and I(Ut−1 > λ).

Letting Ψi = (µi δi ρi)
′, in Caner and Hansen (2001) the authors derived the limiting behaviour of a

Wald type test statistic for testing H0 : Ψ1 = Ψ2 in (1) when the underlying process is known to contain an
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exact unit root with or without an intercept (e.g. ∆yt = µ+ et). Proceeding under the same probabilitic

assumptions our goal here is to instead develop inferences for testing the joint null hypothesis of linearity

and unit root HA
0 : θ1 = θ2, ρ1 = ρ2 = 0 via a Wald type test statistic.

We rewrite (1) in matrix form as ∆Y = X1Ψ1+X2Ψ2+e with Xi stacking the elements given by Iit−1,

tIit−1, yt−1Iit−1. Letting V = [X1 X2] we also write ∆Y = VΨ + e with Ψ = (Ψ1 Ψ2)
′ so that the Wald

statistic associated with HA
0 : µ1 = µ2, δ1 = δ2, ρ1 = ρ2 = 0 is WA

T (λ) = Ψ̂′R′A[RA(V ′V )−1R′A]−1RAΨ̂/σ̂2

with RA = {(1, 0, 0,−1, 0, 0), (0, 1, 0, 0,−1, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1)}. Here σ̂2 refers to the unre-

stricted residual variance. Before stating our main results we also let DFτ,∞ denote the limiting distri-

bution of the t-ratio for testing H0 : ρ = 0 in ∆yt = µ + δt + ρyt−1 + et as stated in Hamilton (1988,

pp. 549-550, Equations (17.4.53) and (17.4.54)). See also Phillips and Perron (1888, Theorem 1(e) with

λ = 0 and σ/σu = 1). The limiting behaviour of the supremum version of WA
T (λ) is now summarised

in the following Proposition with the supremum understood to be taken over some symmetric interval

Λ = [λ0, 1− λ0].

Proposition 1. Under the same assumptions as in Caner and Hansen (2001) and under HA
0 : θ1 =

θ2, ρ1 = ρ2 = 0 we have as T →∞,

sup
λ
WA
T (λ) ⇒ sup

λ
BB(λ)/λ(1− λ) +DF 2

τ,∞ (2)

with BB(λ) denoting a standard Brownian Bridge process of the same dimension as φi.

The above limit is free of nuisance parameters. Its first component is the familiar normalised squared

Brownian Bridge type of process while the second one arises due to the unit root imposed within the null

hypothesis. More specifically DFτ,∞ = [
∫ 1
0 BdB+A]/

√
D with A and D as in Phillips and Perron (1988)

and B the standard Brownian Motion associated with the e′ts.

We expect that the above test will have nontrivial power against departures from linearity as well as

the unit root null. At this stage it is interesting to contrast the above limit with the one that occurs within

a similar setting but with structural break based regimes instead of thresholds in (1). In Pitarakis (2011)

the author has investigated a similar null hypothesis within an ADF regression with a structural break

and documented a limiting distribution composed also of two components one of which was again given

by DF 2
τ,∞ but with its first component being nonstandard and substantially different from the Brownian

Bridge limit above. This highlights the fundamentally different asymptotics that results from alternative

approaches of capturing regime change in models with unit roots.

Table 1 below presents various quantiles of the distribution introduced in Proposition 1 across alterna-

tive magnitudes of λ0 the trimming parameter. The values have been obtained via standard simulations

under a unit root DGP with NID(0, 1) errors and using T = 2000 across N = 2000 replications.

Table 1. Quantiles of the Limiting Distribution of SupWaldA
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λ0 0.50 0.90 0.95 0.975 0.99

0.05 13.74 20.77 23.34 25.41 28.77

0.10 13.14 20.20 22.77 24.78 27.89

0.15 12.61 19.61 21.87 24.18 26.45

3 Finite Sample Size and Local Power Considerations

Using ∆yt = et as our DGP Table 2 below presents empirical size estimates using λ0 = 0.10 and the above

cutoffs.

Table 2. Empirical Size Estimates of SupWaldA

Nominal 2.5% 5.0% 10.0%

T = 200 3.10 6.00 11.60

T = 400 2.97 5.10 10.50

T = 800 2.40 4.25 10.25

The test displays a slight tendency to overreject under a 2.5% nominal size but is otherwise accurate

across all scenarios.

Next, we are interested in scenarios whereby ρ1 = ρ2 = c/T for c < 0 while the parameters associated

with the deterministic components are kept time invariant. This scenario corresponds to a linear local

to unit root model. Letting DFτ,∞(c) denote the limiting distribution of the t ratio for testing ρ = 0 in

∆yt = µ+ δt+ ρyt−1 + et when ∆yt = (c/T )yt−1 + et and whose expression is given under Theorem 3(d)

in Phillips and Perron (1988, p. 342) we have the following result.

Proposition 2. Under the same assumptions as in Caner and Hansen (2001), θ1 = θ2, ρ1 = ρ2 = c/T

and as T →∞ we have supλW
A
T (λ)⇒ supλBB(λ)/λ(1− λ) +DFτ,∞(c)2.

The above result illustrates the local power properties of our test statistic under linearity but with a

local to unit root process. It is interesting to note that the first component of the limiting distribution

remains unaffected by whether ρ1 = ρ2 = 0 or ρ1 = ρ2 = c/T . Our finite sample based power experiments

are geared towards uncovering departures from the linear unit root ρ1 = ρ2 = 0 while maintaining θ1 = θ2.

Our DGP is ∆yt = µ+(c/T )yt−1+et and Table 3 below presents the estimated correct decision frequencies

using our asymptotic quantiles.

Table 3. Power Properties of SupWaldA

c −1 −10 −15 −20 −25 −30 −35 −40 −50

T = 200 3.30 10.60 19.10 32.70 52.10 69.50 84.60 93.50 99.50
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Clearly power increases towards one as we move away from the unit root but is typically low for values of

c up to around -30 which corresponds to an autoregressive parameter of 0.85. Beyond such magnitudes

power quickly reaches 100%. This is very much in line with the the power properties of traditional unit

root tests (see for instance Table 1 in Phillips and Perron (1988)).

It is also interesting to explore the behaviour of SupWaldA when deviations occur in one direction

from the null. We use ∆yt−1 as our threshold variable and set γ = 0 as the corresponding true threshold

parameter i.e. ∆yt = (c/T )yt−1I(∆yt−1 > 0) + et (case (i) say) while in the second scenario ∆yt =

(c/T )yt−1I(∆yt−1 <= 0) + et (case (ii)). Empirical rejection frequencies are displayed in Table 4 below

and suggest that the properties are unaffected by whether the exact unit root is present in the first regime

or the second one.

Table 4. Further Power Properties of SupWaldA

c −1 −10 −15 −20 −25 −30 −35 −40 −50

(i) 3.70 9.40 16.60 27.30 40.10 55.80 69.40 81.00 94.10

(ii) 3.90 10.60 18.90 29.80 41.70 58.40 73.10 82.90 96.00

4 Conclusions & Extensions

We have proposed a test of the joint null of linearity and a unit root within a TAR(1) model with

deterministic components. One obvious limitation of our approach is our focus on a first order au-

toregression which ruled out the inclusion of lagged dependent variables. It is straightforward to es-

tablish that our results continue to hold if our model in (1) is augmented with lagged dependent re-

gressors provided that their associated parameters are assumed to be time invariant as for instance in

∆yt = (θ′1wt−1 + ρ1yt−1)I1t−1 + (θ′2wt−1 + ρ2yt−1)I2t−1 +
∑k

j=1 ψj∆yt−j + ẽt and are also excluded from

our earlier restriction matrices (i.e. the parameters associated with the lagged dependent variables must

assumed to be time invariant).
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APPENDIX

PROOF OF PROPOSITION 1: With DT = diag(
√
T , T 3/2, T ) and using Theorem 3 in Caner and

Hansen (2001) and Lemma 3.1 in Phillips (1988) we have D−1T X1
′X1D

−1
T ⇒ λ

∫ 1
0 B(r)B(r)′ with B(r) =

(1, r, B(r)). Similarly, D−1T X2
′X2D

−1
T ⇒ (1 − λ)

∫ 1
0 B(r)B(r)′ and D−1T X ′XD−1T ⇒

∫ 1
0 B(r)B(r)′. Next,

setting σ2e = 1 for simplicity and no loss of generality and using Theorem 2 in Caner and Hansen

(2001), we have D−1T X1
′e ⇒

∫
B(r)dB(r, λ) and D−1T X ′e ⇒

∫
B(r)dB(r). At this stage it is also con-

venient to note that we can write D−1T X1
′e − λD−1T X ′e ⇒

∫ 1
0 B(r)dG(r, λ) where G(r, λ) = B(r, λ) −

λB(r, 1) is known as a Kiefer process. We note that this latter random variable is mixed normal

with variance λ(1 − λ) due to the independence of G(r, λ) and B(r) since E[G(r1, λ1)B(r2, 1)] = 0

and both processes are Gaussian. Finally, it is convenient to note the algebraic identity WA
T (λ) ≡

(u′V (V ′V )−1R′B[RB(V ′V )−1R′B]−1RB(V ′V )−1V ′u+u′X(X ′X)−1R′L[RL(X ′X)−1R′L]−1RL(X ′X)−1X ′u)/σ̂2

where RL = (0 0 1) and RB = (I3 − I3). The result now follows through the use of the CMT and the

above intermediate limiting results.

PROOF OF PROPOSITION 2. The proof of Proposition 2 follows identical lines to our proof of Propo-

sition 1 and is therefore omitted.
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